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We establish a dissipation functional for the in-plane viscosity of a fluid membrane. Guiding princi-
ples are a reparametrization and Galilean invariance and the requirement that the dissipation rate of a

uniformly rotating membrane vanishes.

From the dissipation functional we derive the equations of

motion of the membrane. As an illustration, these equations are applied to study the dynamics of a near-

ly spherical vesicle.

PACS number(s): 68.15.+¢, 87.45.—k, 68.10.Et

I. INTRODUCTION

Fluid membranes are flexible thin films built up by am-
phiphilic molecules [1]. Since the molecules can diffuse
freely in the membrane, the latter may be seen as a two-
dimensional fluid. Important macroscopic properties of
membranes are bending elasticity, incompressibility, and
viscosity. The basic static model for a continuum
description of a membrane was given by Helfrich [2]. In
his model the elastic energy of the membrane is deter-
mined by its local curvature alone. For the dynamical
properties of membranes, however, hydrodynamic in-
teractions are relevant. Two types of hydrodynamic in-
teractions can be discerned: flow and dissipative process-
es inside the membrane, and the corresponding processes
within the surrounding medium. So far, most discussions
on the dynamics of membranes have considered the cou-
pling of curvature forces of the membrane to hydro-
dynamic modes in the surrounding medium [3-5]. The
internal viscosity of the membrane material has generally
been neglected against the volume viscosity. For excep-
tions see [6,7], and [8] where the dissipation resulting
from the friction between the layers of a bilayer mem-
brane is considered. The inclusion of the membrane
viscosity typically leads to modifications of dispersion re-
lations.

In the present paper we concentrate on the internal
viscoelastic dynamics of the fluid membrane. The de-
grees of freedom of the embedding medium are neglected
completely. We will show in Sec. IV that there exists a
dimensionless parameter 3, which decides whether the
in-plane or the bulk dissipation dominates. This parame-
ter B is the ratio of the linear vesicle size R and a charac-
teristic length R,=v /7 determined by the in-plane and
the bulk viscosities v and 7, respectively. For R <<R,
the bulk viscosity dominates and the theory of [3-5] is
appropriate. In the opposite case R >>R, our approach
applies.

In order to describe the regime of dominating in-plane
viscosity, we derive a dissipation functional. In the
derivation, the covariance of the membrane with respect
to reparametrizations is accounted for, together with Eu-
clidean invariance and the invariance against uniform ro-
tations. Covariance is essential to describe a fluid mem-
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brane in which there is no preferred coordinate system.
Euclidean invariance is required in order to exclude dissi-
pation in uniform translations of the membrane. The dis-
sipation functional, together with the curvature energy,
leads to equations of motion, which then are applied to
the dynamics of almost spherical vesicles.

II. DISSIPATION OF ENERGY

The in-plane viscosity can be understood as resulting
from the friction between two adjacent fluid lines of
different flow velocities. Thus velocity gradients lead to
dissipation of kinetic energy. The rate of dissipation can
be described by a functional which should have the fol-
lowing properties: (i) d,E is negative semidefinite and co-
variant, reflecting fluidity [2]; (ii) d,E only depends on
gradients of the tangential velocity field; (iii) a uniform
translation or rotation does not lead to dissipation.

In order to embody these requirements, we first need to
have a mathematical description of the membrane shape
and its kinematics. This will be based on standard tech-
niques of differential geometry [7]. The membrane is
parametrized through the Euclidean vector

X,(o;t)

X(o;0)= |X,(0;0) |, (1)
X3(0';t)

where (o!,02)=:0 are the internal coordinates of the

plane.

In coordmates movmg with the fluid elements, the ve-
locity field U= 9, X(o,1) _can be decomposed in terms of
the tangential vectors 9; X= aX /90" and the normal vec-
tor N as u; =0; X-T, and v, = =N-U. The normal part v, is
due to variations of the membrane shape. Analogous to
conventional hydrodynamics [11] one may start with a
dissipation functional that is bilinear in the covariant
derivatives of the tangential flow, 4,;:=D;u;.

The dissipation functional then is given by the most
general bilinear form

QE=—= [dPoVg A, 4"
——dem/gA A7 @)
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where VgdPo is the invariant area element with D =2,
and g =det(g;;) is the determinant of the metric tensor
g;=0,X-9;X. A term (4/) is not included since it does
not descrlbe shear flow but a compression. For an in-
compressible membrane, ‘=2 Hv , (H is the mean cur-
vature) [12]. The expression (2) is covariant and positive
semidefinite for v=#¥, but not yet invariant under a uni-
form translation with a constant velocity V. Namely, the
velocity field U and its components transform like

U'lo,t)=Ulo,t)+V,
uj=u;+9,X-V,
+N V. (3)
Hence in terms of the extrinsic curvature-tensor

K;= —a,.)?-ajﬁ we obtain

8,E'=—=[dPoVg (Duj)Du)

v — ’ i
—~ [ dPo Vg (Du))(Du")
=9,E

—%deo\/g[2ujD,~(K’jIV-I7)+Kinif(ﬁ-I7)2]

T/ — .i—..> — i — —
—Efdoo\/g [2u;D,(K'N-V)+K K (N-V)] .
@)

Now, the additional terms in Eq. (4) can be absorbed into
a redefinition of A4;. From (3), one has
D;u;=D;u;+K;(v, —v), which suggests to replace A4;;
n (2) by the covariant expression

Ay:=Du;—K;v,=3,U-3,X . (5)

This ensures the Galilean invariance of (2).

However, the dissipation functional (2) in general still
does not vanish for a uniform rotation where U=w X X,
ie.,

A4;=3,X-0,U=6-(3,X X3, X)=—4 . (6)

As a consequence, a uniform rotation is dissipation free
only if v=%, implying

Q,E==7 [dPoVg (A, 47+ 4,47
=—v[dPoVg Ay, 4D, @)
with 4;,=3(A4;;+ A;). In coordinates moving with the

fluid elements, the tensor A(,-j) is given by the time
derivative of the metric tensor g;;:

3,8,;=9;(3,X)-0,X+3,X-3,0,X)=A;+A4; . (8

Hence in these coordinates, the dissipation functional (7)
reads
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8,E=—7 [dPrVgd,g"d; . )

The dissipation functional (7) is the central result of our
paper. As explained it is negative semidefinite, covariant,
and invariant under uniform translations and rotations.

III. THE EQUATION OF MOTION

The discussion of hydrodynamics of the membrane will
be restricted to a Stokes-like regime. We accordingly bal-
ance the friction forces with the curvature and constraint
forces, neglecting inertial terms. The resulting equation
of motion reads

LOOE) BT | iy, 3, X +¢A (10)
2 SC (7 8 X’ g ¢ ¢ LOV

c

and is similar to the model of Ref. [12] but with a more
realistic friction force. In (10) # is the Helfrich Hamil-
tonian

FH=2 [ dPoVg H? (11

with the mean curvature H =1K ['and bending rigidity «,
and ¢ means a Lagrange multiplier related to the con-
straint of incompressibility described by local conserva-
tion of the area

20, H—D;u'= A}=0 . (12)
From (7) we obtain
8.(3,E)
————=2vD,(3,X4'")
8.U
=2vNK; AT+2v(D; 4713, X , (13)

which after insertion into (10) and decomposition into
normal and tangential parts yields

—vK; A7=

(14)

c
—vgyD; A"=3,¢ . (15)

Equations (14) and (15) constitute another important re-
sult of our paper. Together with Egs. (11) and (12) they
represent a closed description of an incompressible
viscous membrane. Problems arise if the system has
modes with a vanishing friction force, i.e., modes that
leave the metric tensor invariant: 8g;=0. In this case
our equation of motion is meaningless and external fric-
tion forces should be included.

IV. THE DEFORMED SPHERE

Now we apply the above results to an almost spherical
vesicle. Consider a sphere with radius R as a reference
configuration X, where Hy=-—1/R and
Ko,;;=—(1/R)g, ;;- For small deviations §(g,d,t) (with
spherical coordinate @,d) from the unit sphere we have
X(@,9,t)=X,~+E(@,3,t)N,, which, to linear order in &,
implies v, =9,£. We furthermore decompose the tangen-
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tial flow into a gradient and a rotational part
u; =ai¢+66,iajp ’

with € ;; =No[(3,X,)X9;X,]. Equations (14), (15), and
(12), linearized in ¥, p, and £ then read

2 2
K A(2>§+FA0§ =—x% (16)
2 . 2 | 2
aj AO‘(/J-FFI[) +60,jal AOp+FP __;aj‘ﬁy
a7
— 23 E=A0. (18)
R 0
Integration of the tangential part (17) yields
2 2
A0¢+F¢+;¢=const1 , (19)
A+ -2 p=const (20)
oP R2p const, .

Since p and 3 are assumed to be small, we find
const; =const,=0.

The quantities ¥ and ¢ can now be eliminated from
Egs. (16), (18), and (19), with the result

kR?
2v

2
R2

Ao+% 3,6=—" R a2 |ag+-2 | 21)

For all modes with /52 this reduces to the remarkably
simple result

2
K:zli A2 . (22)

9,6=—

This, e.g., shows that the condition of incompressibility
in the present case does not lead to long-ranged interac-
tions. Equation (22) has solutions for / =2

Eim (@ )=Cppe Y, (@,9) (23)

with spherical harmonics Y, ,, and the damping constants

K

a=—7I1+1). 24)
2vR

For these modes, the tangential flow is a pure potential
flow since p=0.

The I =1 modes describe a uniform translation (i) or
rotation (p). The / =0 mode is constant, corresponding
to conservation of total area. '

We will now compare our results to the model given by
Milner and Safran in [4]. They calculate damping con-
stants @; for the modes of a spherical vesicle taking into
account the viscosity of the surrounding medium but
neglecting in-plane dissipation. They result in

ok U+D =y gl +DU+2)1—1)
o=
L gR3 (21 +1)(212+21—1)

where 7 .4 is a dimensionless effective surface tension run-
ning from O to 8 and 7 is the volume viscosity of water.

’
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For 7 .4=0 the ratio of our damping constant (24) to the
one of Milner and Safran is

© 1 21+2)I-1)
a, B (21 +1)21*+21—1)

, (25)

where B is the dimensionless ratio B:=R /R, with
R,:=v/m. Typical values for the in-plane viscosity are
of the order of 1077 Ns/m [9,10] while the volume
viscosity of water is about 1072 Ns/m? Assuming a
droplet of typical size (10 um) we obtain =10, e.g., a ra-
tio w;—,/a;-,=1.45, indicating that both dissipative
mechanisms are of the same order. For vesicles with a
linear size R >R, (f>>1) the in-plane damping will
dominate.

In order to obtain experimental results for the damping
constants @;, one may measure optically the time correla-
tion of fluctuating vesicles, as in the experiments of [3].
In our region the time correlation function for the devia-
tion from the sphere is given by

kTR?

0 T —IU+ D
(E1m(0)6,m (1)) k[20—1(1+1)]?

exp(—a;t), (26)

where the fluctuation-dissipation theorem is used. «; is
our damping constant and the prefactor of the exponen-
tial comes from the static Helfrich energy as in [3].

V. SUMMARY

We have considered a regime of membrane dynamics,
where the internal viscosity of the membrane dominates
other dissipative processes and also inertial terms. To
start with, we wrote down a functional, which describes
the dissipation of energy, deriving from gradients of the
tangential velocities in the membrane. This functional is
covariant, negative semidefinite, and is not affected by
uniform translations or rotations. From this functional,
we derived equations of motion for a membrane corre-
sponding to the Stokes regime in ordinary hydrodynam-
ics, but living on a two-dimensional curved manifold.

These equations have been applied to a nearly spherical
vesicle. The resulting linearized equation for radial devi-
ations from the sphere is remarkably simple and does not
show long-ranged interactions that one would expect in
case of an incompressible membrane.

Comparing our result to another model taking into ac-
count volume dissipation in the surrounding medium, we
demonstrate the relevance of in-plane dissipation and
give the range of validity.
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